ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН
АО «Институт топлива, катализа и электрохимии им. Д.В. Сокольского»

NEWS OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN
JSC «D.V. Sokolsky institute of fuel, catalysis and electrochemistry»

SERIES CHEMISTRY AND TECHNOLOGY

6 (438)
NOVEMBER – DECEMBER 2019

PUBLISHED SINCE JANUARY 1947

PUBLISHED 6 TIMES A YEAR

ALMATY, NAS RK
NAS RK is pleased to announce that News of NAS RK. Series of chemistry and technologies scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of chemistry and technologies in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of chemical sciences to our community.

Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Химия және технология сериясы" ғылыми журналдың Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелген қабылданғанын әңгімейді. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан арі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруды. Webof Science зерттегі ушын, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Химия және технология сериясы Emerging Sources Citation Index-ке еңуі біздің қоғамдарымызқа үйінді және беделі химиялық ғылымдар бойынша контентке адамдығымызды білдіреді.

НАН РК сообщает, что научный журнал «Известия НАН РК. Серия химии и технологий» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по химическим наукам для нашего сообщества.
Бас редакторы
х.г.д., проф., КР ҰҒА академиті М.Ж. Жұрынов

Редакция алқасы:

Агабеков В.Е. проф., академик (Белорус)
Волков С.В. проф., академик (Украина)
Воротынцев М.А. проф., академик (Ресей)
Газалиев А.М. проф., академик (Қазақстан)
Ерженин Е.Е. проф., академик (Қазақстан)
Жармағамбетова А.К. проф. (Қазақстан), бас ред. орынбасары
Жоробекова Ш.Ж. проф., академик (Қыргызстан)
Иткулов Ш.С. проф. (Қазақстан)
Манташян А.А. проф., академик (Армения)
Пралиев К.Д. проф., академик (Қазақстан)
Баешов А.Б. проф., академик (Қазақстан)
Бүркітбаев М.М. проф., академик (Қазақстан)
Джусипбеков У.Ж. проф. корр.-мүшесі (Қазақстан)
Мансуров З.А. проф. (Қазақстан)
Наурызаев М.А. проф. (Қазақстан)
Рахимов К.Д. проф. академик (Таңғұл)
Фарзалиев В.проф., академик (Əзірбайжан)

«ҚР ҰҒА Хабарлары. Химия жəне технология сериясы».
ISSN 2518-1491 (Online),
ISSN 2224-5286 (Print)
Меншікпенуашы: «Қазақстан Республикасының Ұлттық ғылым академиясы» Республикалық қоғамдық бірлестігі (Алматы к.)
Қазақстан республикасының Мәдениет пен акпарат министрлігінің Акпарат жəне мұрағат комитетінде 30.04.2010 ж. жерілген №1089-Ж мерзімдік басымдың тіркейіне қойылу туралы құқірлі

Мерзімділігі: жылына 6 рет.
Тиражы: 300 дана.


© Қазақстан Республикасының Ұлттық ғылым академиясы, 2019

Типографияның мекенжайы: «Аруна» ЖК, Алматы к., Мұрағатбаева кош., 75.
Гл а в н ы й р е д а к т о р
d.x.n., проф., академик НАН РК М. Ж. Журинов

Р е д а к ц и о н н а я к о л л е г и я:

Агабеков В.Е. проф., академик (Беларусь)
Вolkов С.В. проф., академик (Украина)
Воротынцев М.А. проф., академик (Россия)
Газалиев А.М. проф., академик (Казахстан)
Ергожин Е.Е. проф., академик (Казахстан)
Жармагамбетова А.К. проф. (Казахстан), зам. гл. ред.
Жоробекова Ш.Ж. проф., академик (Кыргызстан)
Иткулова Ш.С. проф. (Казахстан)
Манташян А.А. проф., академик (Армения)
Пралиев К.Д. проф., академик (Казахстан)
Баешов А.Б. проф., академик (Казахстан)
Брукитбаев М.М. проф., академик (Казахстан)
Джусипбеков У.Ж. проф. чл.-корр. (Казахстан)
Мулдахметов М.З. проф., академик (Казахстан)
Мансуров З.А. проф. (Казахстан)
Наурызыбаев М.К. проф. (Казахстан)
Рудик В. проф., академик (Молдова)
Рахимов К.Д. проф. академик (Казахстан)
Стрельцов Е. проф. (Беларусь)
Ташимов Л.Т. проф., академик (Казахстан)
Тодераш И. проф., академик (Молдова)
Халиков Д.Х. проф., академик (Таджикистан)
Фарзалиев В. проф., академик (Азербайджан)

«Известия НАН РК. Серия химии и технологии».
ISSN 2518-1491 (Online),
ISSN 2224-5286 (Print)
Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы)
Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №10893-Ж, выданное 30.04.2010 г.
Периодичность: 6 раз в год
Тираж: 300 экземпляров

© Национальная академия наук Республики Казахстан, 2019

Адрес редакции: 050100, г. Алматы, ул. Кунаева, 142,
Институт органического катализа и электрохимии им. Д. В. Сокольского,
каб. 310, тел. 291-62-80, факс 291-57-22, e-mail:orgcat@nursat.kz

Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75
INVESTIGATION OF CONCENTRATION METHOD OF SCANDIUM-CONTAINING SOLUTIONS

Abstract. In current times, enterprises in Kazakhstan that extract uranium by in-situ leaching (ISL) method do not simultaneously recover valuable components. Cardinal problems in this area are the issues of reserves estimation and the availability of effective technology that allows for cost-effective operations. The peculiarities of processing solutions of ISL uranium should also include extremely low contents of valuable components and a complex chemical composition. To solve some of these problems, the authors are working on the development and optimization of technological solutions.

This article presents studies results of further concentration and purification of scandium strippants of the first operations of scandium sorption from uranium sorption filtrates of the ISL cycle. Concentration effect of sodium carbonate on the kinetics and desorption efficiency of scandium from the resin was studied using the example of SE-DEHPA resin under static conditions. Solution's pH influence on second stage operation of sorption on SE-DEHPA resin under static conditions is recognized, and the possibility of subsequent carbonate desorption of scandium was investigated.

As a result of the laboratory studies, a basic technological scheme of scandium associated extraction was developed within the framework of the ISL uranium cycle and the main technological parameters and modes were determined that formed the basis of the basic technical and economic assessment.

Key words: scandium, sorption, desorption, extraction, degree of extraction, exchange capacity, filtrate.

Introduction. Scandium is a rare element and a very expensive metal due to the complex metallurgical processes of its extraction, purification and reduction. General application of scandium oxide is solid oxide fuel cells production. Scandium consumption in light sources production, in nuclear energy, medicine, in the production of refractory materials, phosphors is promising. However, the active use of scandium unique properties is currently constrained by the high cost of its production [1-3].

Due to its low content, scandium is typically recovered as a by-product in the processing of aluminum and rare metal materials. Currently, hydrometallurgical processes, which are mainly associated with leaching, liquid extraction and precipitation, are usually used to extract scandium. One of the major scandium sources is uranium ores, during the processing of which using sulfuric or nitric acid scandium is extracted together with uranium and transferred to leaching solutions. The next time uranium is cleaned, the scandium is separated. When processing uranium-containing leaching solutions, extraction and sorption methods are most often used to extract scandium [4-13].

Separation and purification of scandium is carried out using acidic, alkaline, neutral and chelating extractants. A promising area of extraction chemistry is the use of binary extractants, characterized by high separation and distribution coefficients, a high extraction rate, as well as ease of re-extraction and reagent consumption reduction. Among extractants, the most selective with respect to scandium is di-2-ethylhexylphosphoric acid (DEHPA) [14-22].
The aim of this work is to develop a highly efficient, economically acceptable technology for scandium associated extraction from uranium sorption filtrates.

**Experimental procedure**

Consumables. In our previous investigations, we determined the effectiveness of a binary extractant prepared on the basis of di-(2-ethylhexyl) phosphoric acid (DEHPA) for scandium extraction from uranium sorption filtrates and established the main approaches to desorption. This article discusses the technological issues of further concentration and purification of scandium strippants of the first and second sorption operations.

Table 1 presents the characteristics of DEHPA sorbent used in the work, which underwent preliminary thorough conditioning.

<table>
<thead>
<tr>
<th>Ionite</th>
<th>Functional group</th>
<th>Matrix</th>
<th>Granules size in the air-dry state, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE- DEHPA</td>
<td>C_{16}H_{35}PO_{4}</td>
<td>macroporous, cross-linked polystyrene</td>
<td>0.63÷2.50</td>
</tr>
</tbody>
</table>

**Scandium sorption in static conditions.** Taking into account the extremely low concentrations of the target components, it is advisable to use a large solution: sorbent phase ratio (L:S) for studies under static conditions. Static sorption was made in a container with a volume of 5 dm³ using a mixing device with a ratio of L:S 1000:1 (5 dm³:5 g). Experiment duration was 24 hours. Samples for analysis were taken at certain time intervals without interrupting the experiment. The change in system volume as a result of sampling did not exceed 5%.

The values of the static exchange capacity of the ion exchanger was calculated by the formula:

$$SEC = \frac{C_0 - C_\infty}{C_0} \cdot \frac{V}{m}$$

where $C_0$ and $C_\infty$ – initial and equilibrium concentrations of the adsorbed component, mg/dm³ or mmol/dm³; $V$ – volume of solution, dm³; $m$ – weight of resin, g.

**Scandium sorption I from a model solution.** Research of the first stage of scandium sorption was carried out on a model solution simulating real solutions composition of the “Irkol” mine.

The composition of model solution with a volume of 60 dm³ and a scandium concentration of 0.15 mg/dm³:
- 4.602 mg of scandium oxide Sc₂O₃ with a purity of 99.9%;
- an aqueous solution of sulfuric acid (60%) of "chemical pure" grade 94.6.

Scandium oxide dissolution was done in a hot sulfuric acid solution at a temperature of 80°C for 0.5 hours.

The process of scandium sorption on DEHPA resin in a static mode was conducted research on a laboratory shaker LOIP LS110 at a rotation speed of 190 rpm at room temperature.

**ScandiumsorptionIIfromstrippant stage I.** Kinetic studies of second stage process of sorption at different pH were carried out in a model solution with a concentration of scandium of 15.81 mg / dm³ simulating stage I strippant. Solution preparation included the dissolution of a selected sample of scandium oxide (99.9%) weighing 0.0153g in 1 cm³ of concentrated sulfuric acid, followed by dilution of the solution to 1 dm³. The resulting solution was divided into 5 equal portions of 200 cm³, which underwent a pH adjustment to the desired value. Solution pH was adjusted to the acidic side with sulfuric acid and alkaline - with sodium carbonate. At sodium carbonate concentration of 200 g/dm³, the pH was 10.73, while the resin formed large pieces with a diameter of 0.5-1.0 cm, which subsequently stuck together into one large agglomerate.
Studies were carried out at pH values of solutions 1, 3, 5, 10, 13.

The process of scandium secondary sorption from the strippant of stage I on resins in the static mode was taken on a laboratory shaker LOIP LS110 at a rotation speed of 190 rpm at room temperature.

**Scandium desorption from saturated DEHPA resin under static conditions.** The processes of primary and secondary desorption of scandium were carried out under static conditions using various concentrations of Na$_2$CO$_3$ sodium carbonate desorbing solution: 100, 150, 200 and 250 g/dm$^3$.

In desorption study, the ratio L:S=50:1 (250 cm$^3$: 5 g) was used with a duration of 12 hours. The change in system volume as a result of sampling also did not exceed 5%.

The element content in the resin was calculated based on the material balance taking into account element concentration in the initial solution.

The scandium content in liquid and solid samples was analyzed using plasma atomic emission spectroscopy (Optima 8300 DV, PerkinElmer, LLC).

**Results and discussion**

As a result of scandium sorption I from model solutions on DEHPA resin, saturation was established (table 2).

<table>
<thead>
<tr>
<th>Number of resin's aliquot</th>
<th>Initial Sc concentration, mg/dm$^3$</th>
<th>Final Sc concentration, mg/dm$^3$</th>
<th>Estimated Sc concentration on resin, kg/m$^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.0015</td>
<td>0.118</td>
</tr>
<tr>
<td>2</td>
<td>0.12</td>
<td>0.0012</td>
<td>0.119</td>
</tr>
<tr>
<td>3</td>
<td>0.12</td>
<td>0.0015</td>
<td>0.118</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>0.00095</td>
<td>0.119</td>
</tr>
</tbody>
</table>

Scandium I was desorbed from saturated DEHPA resin using a sodium carbonate Na$_2$CO$_3$ stripping solution of various concentrations: 100, 150, 200 and 250 g/dm$^3$ (table 3, figure 1).

![Figure 1 – Scandium desorption I kinetic curves at various concentrations of Na$_2$CO$_3$.](image-url)
Table 3 – Research findings of the kinetics of scandium desorption I at various concentrations of a desorbing agent

<table>
<thead>
<tr>
<th>Duration</th>
<th>Initial Sc content in DEHPA resin, kg/m³</th>
<th>Scandium concentration in solution, mg/dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.118</td>
<td>0.119</td>
<td>0.118</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.53</td>
<td>0.41</td>
<td>0.34</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.68</td>
<td>0.60</td>
<td>0.47</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>0.70</td>
<td>0.60</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td>0.77</td>
<td>0.63</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.87</td>
<td>0.69</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.56%</td>
<td>29.24%</td>
<td>23.39%</td>
<td>22.52%</td>
<td></td>
</tr>
</tbody>
</table>

It is seen from table 3, the obtained degree of scandium extraction determined in the static mode, is low and is at the level of 30%, which is probably due to the significant affinity of scandium to the resin and laboratory scale of the tests. The most optimal concentration of a stripping solution providing this extraction degree is 100 g/dm³ of Na₂CO₃.

During the second stage of scandium sorption from the strippant of stage I, pH influence of the solution on the kinetic sorption properties of the DEHPA resin was determined. The composition and preparing method of model solutions are described above. The results of testing the operation of scandium sorption II are shown in table 4 and in figure 2.

Table 4 – The results of scandium sorption II kinetics studies with DEHPA resin at various pH solutions

<table>
<thead>
<tr>
<th>Duration</th>
<th>Scandium concentration in solution, mg/dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 1</td>
<td>pH 3</td>
<td>pH 5</td>
<td>pH 10</td>
<td>pH 13</td>
</tr>
<tr>
<td>1 hour</td>
<td>0.012</td>
<td>0.0012</td>
<td>0.66</td>
<td>7.94</td>
<td>9.42</td>
</tr>
<tr>
<td>2 hours</td>
<td>0.020</td>
<td>0.0022</td>
<td>0.95</td>
<td>7.79</td>
<td>8.69</td>
</tr>
<tr>
<td>4 hours</td>
<td>0.0072</td>
<td>0.0053</td>
<td>0.79</td>
<td>6.46</td>
<td>10.54</td>
</tr>
<tr>
<td>6 hours</td>
<td>0.0037</td>
<td>0.0014</td>
<td>0.56</td>
<td>7.01</td>
<td>10.15</td>
</tr>
<tr>
<td>12 hours</td>
<td>&lt;0.000003</td>
<td>&lt;0.00003</td>
<td>0.054</td>
<td>8.01</td>
<td>10.03</td>
</tr>
<tr>
<td>24 hours</td>
<td>0.00048</td>
<td>&lt;0.00003</td>
<td>0.0011</td>
<td>7.76</td>
<td>10.05</td>
</tr>
<tr>
<td>Extraction, %</td>
<td>100.00%</td>
<td>100.00%</td>
<td>99.99%</td>
<td>50.92%</td>
<td>36.43%</td>
</tr>
<tr>
<td>Sc content in resin, kg/m³</td>
<td>0.474</td>
<td>0.474</td>
<td>0.468</td>
<td>0.400</td>
<td>0.377</td>
</tr>
</tbody>
</table>

D2EHPA

Figure 2 – Kinetic curves of scandium sorption II with DEHPA resin at various pH of the solution
As can be seen from table 4, when the pH of the solution is 5, there is a decrease in the sorption properties of the DEHPA resin and with a further increase in the pH of the solution, the capacity of the resin decreases significantly (up to 70% of the capacity in an acidic environment), which is due to the type of ion-exchange groups.

Studies results confirm the feasibility of carrying out the first operation of solutions desorption using 100 g/dm³ Na₂CO₃, since in the future, a minimum amount of deoxidizing agent will be required to bring the pH of stage I strippants to 2-3. This solution will allow for efficient sorption extraction in the second stage with the lowest operating cost.

DEHPA resin obtained as a result of scandium sorption II was desorbed in a static mode using 100 g/dm³ Na₂CO₃. The results of testing scandium desorption operation II are shown in table 5 and figure 3.

Table 5 - Results of kinetics studies of scandium desorption II at 100 g/dm³ Na₂CO₃

<table>
<thead>
<tr>
<th>Duration</th>
<th>Scandium concentration in solution, mg/dm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resin from pH 1</td>
</tr>
<tr>
<td>The initial content of Sc in the resin, kg/m³</td>
<td>0.474</td>
</tr>
<tr>
<td>1 hour</td>
<td>0.65</td>
</tr>
<tr>
<td>2 hours</td>
<td>1.24</td>
</tr>
<tr>
<td>4 hours</td>
<td>1.90</td>
</tr>
<tr>
<td>6 hours</td>
<td>2.50</td>
</tr>
<tr>
<td>12 hours</td>
<td>3.42</td>
</tr>
<tr>
<td>24 hours</td>
<td>4.99</td>
</tr>
<tr>
<td>Extraction, %</td>
<td>35.66%</td>
</tr>
</tbody>
</table>

As in the case of desorption I, the obtained degree of scandium extraction, determined in static mode, is at the level of 30%, which can be gave a reason by laboratory test scope. It is noteworthy that scandium practically did not desorb from a resin saturated at an alkaline pH.

Derived strippants can be further processed by oxalic acid precipitation. The advantage of this method is scandium precipitation, while calcium (the main impurity element) during oxalic acid deposition remains in solution, which ultimately allows for a cleaner product.
As a result of laboratory studies, a conceptual technological schema was developed for the associated extraction of scandium from uranium sorption filtrates. The main technological parameters and modes, which formed the basis of the base technical and economic assessment, were determined. Indicators given in this assessment are preliminary and cannot be applied directly for project purposes. However, these results will allow giving a sense of feasibility of continuing work in this area.

Considering that the initial and remaining reserves of scandium in the contaminated uranium ore are unknown, at this stage we can assume that scandium equilibrium concentration in solution is 0.22 g/m³. It makes sense to make an assumption about the feasibility of processing 250 m³/h of mother liquids for uranium sorption, which is convenient both in hardware design and in terms of minimizing financial risks at an acceptable level of profitability.

The scandium extraction technology is based on sorption I on an impregnated sorbent of the brand SE-DEHPA, carbonate desorption I, neutralization and subsequent sorption II on SE (SE-solid extractant). Desorption II is carried out by sodium carbonate and subsequently scandium oxalate is produced by oxalic deposition in an acidic medium (figure 4).

Figure 4 – Process flow sheet of scandium extraction from uranium sorption filtrates
The scandium-containing solution (uranium sorption filtrate) is passed through PSC-3m type pressure sorption column filled with SE resin, before the scandium breaks through in the sorption filtrates with a flow of 250 m³/h.

2 m³ of scandium-saturated resin is discharged from the column every 24 hours. Sc content in the reloaded resin is 590 g/m³. Desorption is carried out using sodium carbonate solution with a concentration of 100 g/dm³ by passing 8 specific volumes of the solution through 2 m³ of resin in the corresponding column. An extraction degree of 40% sorbed scandium to obtain 16 m³ of strippant with an average content of 29.7 g/m³.

The resin is returned to the primary sorption operation. Strippant before subsequent sorption II is deoxidized with sulfuric acid concentrated solution. The conditioned solution is collected in a collection tank and then, with a flow of 0.25 m³/h, is sent to the sorption of stage II, also carried out on SE in the corresponding column. 640 specific volumes (16 m³) of the stage solution are passed through 0.025 m³ of the processed resin for 64 hours, after which the scandium content in the resin reaches 18.6 kg/m³.

At the end of sorption, desorption is carried out in the same column by passing a desorbing solution of 100 g/dm³ Na₂CO₃. Solution's 8 beats are flowed through 0.025 m³ of resin with the extraction of at least 50% of the adsorbed scandium. As a result, 0.2 m³ of solution is formed with an average concentration of 1.13 kg/m³. The resulting strippant is adjusted in pH to a value of 2–3 with a solution of ammonia and oxalic acid dihydrate is added. Precipitated sediments are filtered on a nutsche-filter and calcined at a temperature of 900°C to obtain draft quality scandium oxide.

Thus, the productivity of the section will be about 0.214 kg of scandium in 24 hours, or 71.47 kg of scandium per year, which in terms of scandium oxide will be 109.35 kg.

The specified parameters are indicative and require confirmation during conducting semi-industrial tests on real solutions.

**Conclusion**

Based on the analysis of the obtained experimental data, sorption and desorption processes optimal operating parameters were determined with the simultaneous extraction of scandium from uranium sorption filtrates, which formed the basis of the developed conceptual technological scheme for scandium extraction. A preliminary technical and economic estimate of the process indicates the feasibility of further research on the associated extraction of scandium from real uranium sorption filtrates.

**Funding.** The research was carried out within the framework of the project AP05133140 "Development and testing of resource-saving technologies for extraction of valuable byproducts during the processing of uranium ores with a comprehensive assessment of its profitability and investment attractiveness" due to scientific projects financing under the of the Scientific Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

УДК 669.2; 669.85./86; 669.849; 669.864; 546.63

Н.С. Иванов, Н.М. Шокобаев, И.Е.Адельбаев,А.З. Абильмагжанов, А.Е. Нуртазина

AK "Д.В. Сокольскийатындағыжанармай, катализ және электрохимия институты", Алматы, ҚазақстанРеспубликасы

СКАНДИЙ БАР ЕРІТІНДІЛЕРІНІҢ ШОҒЫРЛАНДЫРУ ЭДІСІН ЗЕРТТЕУ

**Аннотация.** Қазіргі уақытта Қазақстандағы жерастылық ұңғымалық шаймалау əдісімен уран өндіретін кәсіпорындар (ЖҰШ) бір ұақытта байланысты компоненттерді шығаруды жүзеге асырады. Корларды багалау және рентабельді эрітінділерді жүргізу жұмысы өсіріледі. ЖШУ технологиялық эрітінділерінің ерекшеліктерін пайдалану құрамдастық және түнкі кезеңді ерікшеліктеріне пайдалау құрамдасын өте тәуекелді. Бұл мәселені әлібұл саладағы және терезе ерікшеліктер іздеу және кезектеу құрылымдары бойынша жұмыс жасады.

Бұл мәселені ЖШУ үзілісінің ұран өрісінің фильтртірелі және тазартылған шашы өсірілді. Бұл мәселенің құрылымдарының нысаның ерікшеліктерінің кеңінен тәуекелді. Статикалық моменттердің және толықтан көрсетілген жағдайда, осы мәселенің тәуекелді дайындауына және құрылысқа жұмыс жасады.
ИССЛЕДОВАНИЕ СПОСОБА КОНЦЕНТРИРОВАНИЯ СКАНДИЙСОДЕРЖАЩИХ РАСТВОРОВ

Аннотация. В настоящее время предприятие в Казахстане, добывающее уран методом подземного скважинного выщелачивания (ПСВ), не осуществляют попутное извлечение ценных компонентов. Основными проблемами данного направления являются вопросы подсчета запасов и наличие эффективной технологии, позволяющей вести рентабельную деятельность. К особенностям переработки растворов ПСВ урана следует также отнести крайне низкие содержания ценных компонентов и сложный химический состав. Для решения некоторых из этих проблем авторами ведутся работы по разработке и оптимизации технологических решений.

В данной статье представлены результаты исследований дальнейшего концентрирования и очистки скандиевых десорбатов первой операцией сорбции скандиния из фильтратов сорбции урана цикла ПСВ. В статических условиях на примере смолы ТВЭКС-Д2ЭГФК изучено влияние концентрации карбоната натрия на кинетику и эффективность десорбции скандиния из смолы. Рассмотрено влияние рН раствора на операцию второго этапа сорбции на смоле ТВЭКС-Д2ЭГФК в статических условиях и исследована возможность последующей карбонатной десорбции скандиния.

В результате проведённых лабораторных исследований была разработана принципиальная технологическая схема попутного извлечения скандиния в рамках цикла ПСВ урана и определены основные технологические параметры и режимы, которые легли в основу базовой технико-экономической оценки.

Ключевые слова: скандиний, сорбция, десорбция, экстракция, степень извлечения, обменная емкость, фильтрат.

Information about authors:
Ivanov Nikolai Sergeevich – Candidate of Chemical Sciences, Leading Researcher in Laboratory of Applied Research, JSC “D.V. Sokol'skii Institute of Fuel, Catalysis and Electrochemistry”, https://orcid.org/0000-0002-2153-2802
Shokobayev Nurlan Maratovich – PhD, Junior Researcher in Laboratory of Applied Research, JSC “D.V. Sokol'skii Institute of Fuel, Catalysis and Electrochemistry”, https://orcid.org/0000-0003-1435-8583
Adelbayev Iskander Yersayanovich – master’s degree, senior engineer in Laboratory of Applied Research of JSC “D.V. Sokol'skii Institute of Fuel, Catalysis and Electrochemistry”, https://orcid.org/0000-0001-7202-5344
Nurtazina Aizhan Erkinbekkyzy – PhD student, master’s degree, senior engineer of Applied Research laboratory of JSC “D.V. Sokol'skii Institute of Fuel, Catalysis and Electrochemistry”, https://orcid.org/0000-0001-8355-8031

REFERENCES


Publication Ethics and Publication Malpractice
in the journals of the National Academy of Sciences of the Republic of Kazakhstan

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan.

The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics.
Правила оформления статьи для публикации в журнале смотреть на сайте:
www:nauka-nanrk.kz

ISSN 2518-1491 (Online), ISSN 2224-5286 (Print)

Редакторы: М. С. Ахметова, Т. А. Апандиев, Аленов Д. С.
Верстка на компьютере А. М. Кульгынбаевой

Подписано в печать 05.12.2019.
Формат 60х88/8. Бумага офсетная. Печать – ризограф.
5,25 п.л. Тираж 300. Заказ 6.

Научная академия наук РК
050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19