ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ

ХАБАРЛАРЫ

ИЗВЕСТИЯ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

NEWS

OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ХИМИЯ ЖӘНЕ ТЕХНОЛОГИЯ СЕРИЯСЫ

СЕРИЯ ХИМИИ И ТЕХНОЛОГИИ

SERIES CHEMISTRY AND TECHNOLOGY

3 (411)

МАМЫР – МАУСЫМ 2015 ж. МАЙ – ИЮНЬ 2015 г. МАҮ – JUNE 2015

1947 ЖЫЛДЫҢ ҚАҢТАР АЙЫНАН ШЫҒА БАСТАҒАН ИЗДАЕТСЯ С ЯНВАРЯ 1947 ГОДА PUBLISHED SINCE JANUARY 1947

> ЖЫЛЫНА 6 РЕТ ШЫҒАДЫ ВЫХОДИТ 6 РАЗ В ГОД PUBLISHED 6 TIMES A YEAR

> > АЛМАТЫ, ҚР ҰҒА АЛМАТЫ, НАН РК ALMATY, NAS RK

Бас редактор ҚР ҰҒА академигі **М. Ж. Жұрынов**

Редакция алкасы:

хим. ғ. докторы, проф., ҚР ҰҒА академигі Әдекенов С.М.; хим. ғ. докторы, проф., ҚР ҰҒА академигі **Ерғожин Е.Е.** (бас редактордың орынбасары); хим. ғ. докторы, проф., ҚР ҰҒА академигі **Пірәлиев К.Д.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Бүркітбаев М.М.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Бүркітбаев М.М.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Жүсіпбеков У.Ж.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Молдахметов М.З.**, техн. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Молдахметов М.З.**, техн. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Сатаев М.И.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Сатаев М.И.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Сатаев М.И.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Тәшімов Л.Т.**; хим. ғ. докторы, проф. **Мансуров З.А.**; техн. ғ. докторы, проф. **Наурызбаев М.К.**

Редакция кеңесі:

Беларусь Республикасының ҰҒА академигі **Агабеков В.Е.** (Беларусь); Украинаның ҰҒА академигі **Волков С.В.** (Украина); Қырғыз Республикасының ҰҒА академигі **Жоробекова Ш.Ж.** (Қырғызстан); Армения Республикасының ҰҒА академигі **Манташян А.А.** (Армения); Молдова Республикасының ҰҒА академигі **Туртэ К.** (Молдова); Әзірбайжан ҰҒА академигі **Фарзалиев В.** (Әзірбайжан); Тәжікстан Республикасының ҰҒА академигі **Халиков Д.Х.** (Тәжікстан); хим. ғ. докторы, проф. **Нараев В.Н.** (Ресей Федерациясы); философия ғ. докторы, профессор **Полина Прокопович** (Ұлыбритания); хим. ғ. докторы, профессор **Марек Сикорски** (Польша)

Главный редактор

академик НАН РК **М. Ж. Журинов**

Редакционная коллегия:

доктор хим. наук, проф., академик НАН РК С.М. Адекенов; доктор хим. наук, проф., академик НАН РК Е.Е. Ергожин (заместитель главного редактора); доктор хим. наук, проф., академик НАН РК К.Д. Пралиев; доктор хим. наук, проф., чл.-корр. НАН РК А.Б. Баешов; доктор хим. наук, проф., чл.-корр. НАН РК М.М. Буркитбаев; доктор хим. наук, проф., чл.-корр. НАН РК У.Ж. Джусипбеков; доктор хим. наук, проф., чл.-корр. НАН РК М.З. Мулдахметов; доктор техн. наук, проф., чл.-корр. НАН РК Ж.У. Мырхалыков; доктор мед. наук, проф., чл.-корр. НАН РК К.Д. Рахимов; доктор хим. наук, проф., чл.-корр. НАН РК М.И. Сатаев; доктор хим. наук, проф., чл.-корр. НАН РК М.И. Сатаев; доктор хим. наук, проф., чл.-корр. НАН РК Л.Т. Ташимов; доктор хим. наук, проф. З.А. Мансуров; доктор техн. наук, проф. М.К. Наурызбаев

Редакционный совет:

академик НАН Республики Беларусь **В.Е. Агабеков** (Беларусь); академик НАН Украины **С.В. Волков** (Украина); академик НАН Кыргызской Республики **Ш.Ж. Жоробекова** (Кыргызстан); академик НАН Республики Армения **А.А. Манташян** (Армения); академик НАН Республики Молдова **К. Туртэ** (Молдова); академик НАН Азербайджанской Республики **В. Фарзалиев** (Азербайджан); академик НАН Республики Таджикистан **Д.Х. Халиков** (Таджикистан); доктор хим. наук, проф. **В.Н. Нараев** (Россия); доктор философии, профессор **Полина Прокопович** (Великобритания); доктор хим. наук, профессор **Марек Сикорски** (Польша)

«Известия НАН РК. Серия химии и технологии». ISSN 2224-5286

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №10893-Ж, выданное 30.04.2010 г.

Периодичность: 6 раз в год Тираж: 300 экземпляров

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18,

http://nauka-nanrk.kz/chemistry-technology.kz

© Национальная академия наук Республики Казахстан, 2015

Адрес редакции: 050100, г. Алматы, ул. Кунаева, 142,

Институт органического катализа и электрохимии им. Д. В. Сокольского,

каб. 310, тел. 291-62-80, факс 291-57-22, e-mail:orgcat@nursat.kz

Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75

Editor in chief

M. Zh. Zhurinov, academician of NAS RK

Editorial board:

S.M. Adekenov, dr. chem. sc., prof., academician of NAS RK; A.M. Gazaliev, dr. chem. sc., prof., academician of NAS RK; Ye.Ye. Yergozhin, dr. chem. sc., prof., academician of NAS RK (deputy editor); K.D. Praliyev, dr. chem. sc., prof., academician of NAS RK; A.B. Bayeshov, dr. chem. sc., prof., corr. member of NAS RK; M.M. Burkitbayev, dr. chem. sc., prof., corr. member of NAS RK; U.Zh. Zhusipbekov, dr. chem. sc., prof., corr. member of NAS RK; Kh.I. Itzhanova, dr. chem. sc., prof., corr. member of NAS RK; M.Z.Muldakhmetov, dr. eng. sc., prof., corr. member of NAS RK; Zh.U. Myrkhalykov, dr. eng. sc., prof., corr. member of NAS RK; K.D. Rakhimov, dr. med. sc., prof., corr. member of NAS RK; M.I. Satayev, dr. chem. sc., prof., corr. member of NAS RK; L.T. Tashimov, dr. chem. sc., prof., corr. member of NAS RK; Z.A. Mansurov, dr. chem. sc., prof..; M.K. Nauryzbayev, dr. eng. sc., prof.

Editorial staff:

V.Ye. Agabekov, NAS Belarus academician (Belarus); S.V. Volkov, NAS Ukraine academician (Ukraine); Sh.Zh. Zhorobekov, NAS Kyrgyzstan academician (Kyrgyzstan); A.A. Mantashyan, NAS Armenia academician (Armenia); K. Turte, NAS Moldova academician (Moldova); V. Farzaliyev, NAS Azerbaijan academician (Azerbaijan); D.Kh. Khalikov, NAS Tajikistan academician (Tajikistan); V.N. Narayev, dr. chem. sc., prof. (Russia); Pauline Prokopovich, dr. phylos., prof. (UK); Marek Sikorski, dr. chem. sc., prof. (Poland)

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of chemistry and technology. ISSN 2224-5286

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)

The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the Ministry of Culture and Information of the Republic of Kazakhstan N 10893-Ж, issued 30.04.2010

Periodicity: 6 times a year Circulation: 300 copies

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18,

http://nauka-nanrk.kz/chemistry-technology.kz

© National Academy of Sciences of the Republic of Kazakhstan, 2015

Editorial address: Institute of Organic Catalysis and Electrochemistry named after D. V. Sokolsky

142, Kunayev str., of. 310, Almaty, 050100, tel. 291-62-80, fax 291-57-22,

e-mail: orgcat@nursat.kz

Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty

— 4 —

NEWS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES CHEMISTRY AND TECHNOLOGY

ISSN 2224-5286

Volume 3, Number 411 (2015), 92 – 97

EFFECT OF THE RATIO OF MANGANESE AND PHOSPHORUS SLUDGE ON THE PROCESS OF THEIR DECOMPOSITION OF A MIXTURE OF SULFURIC AND PHOSPHORIC ACID

R. M. Chernyakova, R. A. Kaiynbayeva, N. N. Kozhabekova, U. Z. Jussipbekov, D. S. Berzhanov, M. Zh. Kussainova, A. A. Agataeva

JSC «Chemical Sciences Institution named after A.B. Bekturov», Almaty, Kazakhstan. E-mail: marzhan.zhan.84@mail.ru

Key words: lime mud, manganese slurry, sulfuric acid, phosphoric acid, leaching.

Abstract. It is found that by varying the temperature of the process, the ratio of lime sludge and manganese, and considering the time of decomposition of a mixture of phosphoric and sulfuric acid can be achieved the most complete extraction of manganese and potassium simultaneously low or high transition of iron and aluminum in an acidic solution. Increasing the temperature of from 57 to 90 °C leads to a maximum in the curves for aluminum extraction ratios P slurry: Mn sludge = 10:2.5-3.0. When removing aluminum from the slurry process is not the time factor affects the character of the curves. By varying the ratio of manganese and lime sludge, process temperature, and given the time of acid digestion can be achieved more complete extraction of manganese and potassium while the low transition of iron and aluminum. Optimum conditions decomposition of a mixture of sludge with a mixture of phosphoric and sulfuric acids are: P ratio of the sludge: Mn = 10 sludge: 0.5-1.0; Temperature - (25 - 38) °C; time - no more than 60 minutes, or the ratio of sludge P: Mn sludge = 10: 2-3; temperature from 57 to 90°C; Time - (105-180) minutes.

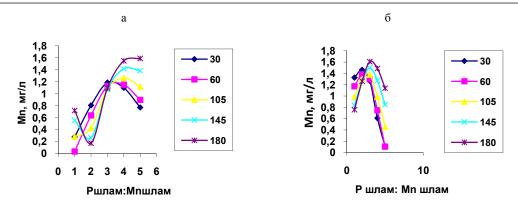
УДК 541.13

ВЛИЯНИЕ СООТНОШЕНИЯ МАРГАНЦЕВОГО И ФОСФОРСОДЕРЖАЩЕГО ШЛАМОВ НА ПРОЦЕСС ИХ РАЗЛОЖЕНИЯ СМЕСЬЮ СЕРНОЙ И ФОСФОРНОЙ КИСЛОТ

Р. М. Чернякова, Р. А. Кайынбаева, Н. Н. Кожабекова, У. Ж. Джусипбеков, Д. С. Бержанов, М. Е. Кусаинова, А. А. Агатаева

АО «Институт химических наук им. А. Б. Бектурова», Алматы, Казахстан

Ключевые слова: известковый шлам, марганцевый шлам, серная кислота, фосфорная кислота, выщелачивание.

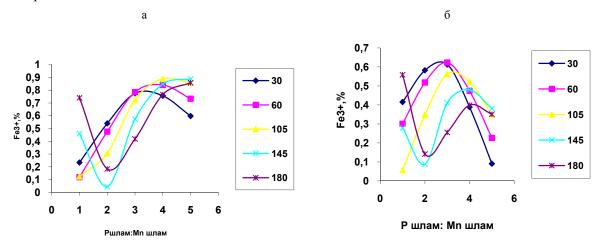

Аннотация. Установлено, что варьируя температуру процесса, соотношение известкового и марганец-содержащего шламов и учитывая время их разложения смесью фосфорной с серной кислотой можно дост-игать наиболее полного извлечения марганца и калия с одновременно низким либо высоким переходом железа и алюминия в кислый раствор. Повышение температуры процесса от 57 до 90°С приводит к появлению максимума на кривых извлечения алюминия для соотношений Р шлам: Мп шлам=10:2,5-3,0. При извлечении алюминия из шламов фактор времени процесса не оказывает влияние на характер кривых. Варьируя соотношение известкового и марганецсодержащего шламов, температуру процесса и учитывая время их кислотного разложения можно достигать наиболее полного извлечения марганца и калия с одновременно низким переходом железа и алюминия.

Оптимальными условиями разложения смеси шламов смесью фосфорной и серной кислот являются: соотношение Р шлам: Мп шлам = 10:0,5-1,0; температура – $(25 - 38)^{\circ}$ C,; время - не более 60 минут, либо соотношение Р шлам:Мп шлам = 10:2-3; температура от 57 до 90° C; время – (105-180) минут.

Технический прогресс в химической промышленности направлен на разработку технологических процессов, обеспечивающих получение промышленной продукции с меньшими материальными, энергетическими затратами, на сокращение объёмов накопления промышленных отходов и их утилизацию. Проблемы загрязнения промышленными отходами территорий, прилегающих к металлургическим и фосфорным предприятиям РК, усложняются отсутствием эффективных способов утилизации накопленных отходов и вовлечением в переработку низкосортного минерального сырья, что приводит к увеличению техногенных отходов, таких как марганцевый и известковый шламы. Наличие в таких отходах полезных компонентов, фосфора и марганца, позволяет их рассматривать в качестве доступного и дешевого сырьевого источника получения фосфорных удобрений с микроэлементом — марганцем. В настоящее время фосфорные марганецсодержащие удобрения востребованы в сельском хозяйстве для выращивания практически всех колосковых, овощных и плодо-ягодных и цитрусовых плодов.

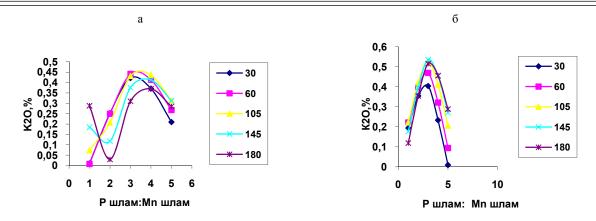
В работе исследовано влияние соотношения известкового фосфорсодержащего и марганецсодержащего шламов на извлечение основных компонентов из их смеси в кислую фазу системы «известковый шлам (Р шлам) — марганецсодержащий шлам (Мп шлам) — H_3PO_4 — H_2SO_4 ». Соотношение шламов варьировали в пределах «Р шлам : Мп шлам» равных (10:0,5-1,5) масс. части. Время процесса меняли от 30 до 180 мин., температуру — от 25 до 90°С. Норма серной кислоты рассчитывалась на стехиометрический расход, необходимой на связывание марганца, железа, кальция и магния в марганецсодержащем шламе, а фосфорной кислоты — на содержание (40-44)% P_2O_5 в готовом продукте разложения смеси шламов.

Анализ полученных результатов показал, что кривые перехода марганца из смеси шламов имеют четко выраженный минимум в области соотношения Р шлам: Мп шлам = 10:2 при нагреве до 38°C (рисунок 1 а). Причем эта зависимость сохраняется во всем исследуемом интервале времени для 25°C, а для 38°C только при длительности процесса 105-180 минут. Кривые извлечения Мп, полученные до 60 мин. процесса, носят экстремальный характер с максимумом для соотношения 10:3, который сохраняется во всем исследуемом интервале времени вплоть до 90°C. Исходя из полученных данных, следует, что при низкой температуре разложение шламов с высоким выходом Мп можно проводить как при низкой норме марганецсодержащего шлама (Р шлам: Мп шлам=



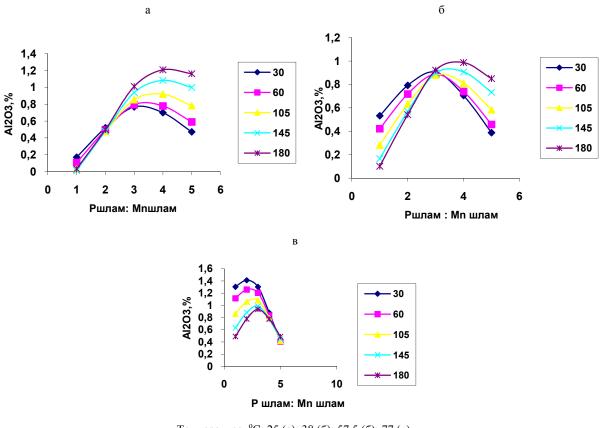
Температура, оС: 38 (а); 77 (б)

Рисунок 1 – Влияние соотношения шламов на извлечение Мп из их смеси


= 10:0,5), так и при высокой его нагрузке (Р шлам : Мп шлам=10:4,5). В случае разложения смеси шламов в условиях нагрева от 50 до 90°С норма марганецсодержащего шлама не должна превышать соотношения Р шлам : Мп шлам=10:3 (рисунок 1б). Снижение выхода марганца в кислый раствор возможно обусловлено образованием малорастворимых кристаллических фосфатов, экранирующих доступ кислотного реагента к зернам сырья.

Как видно из рисунка 2 кривые извлечения железа (III) в зависимости от соотношения шламов из их смеси характеризуются наличием максимума и минимума. Минимум извлечения железа приходится на соотношение Р шлам: Мп шлам равное 10:2 при продолжительности процесса разложения от 145 до 180 минут во всем исследуемом интервале температур. Максимальное его извлечение наблюдается для соотношения Р шлам : Мп шлам = 10:3 при продолжительности процесса от 30 до 105 минут не зависимо от температуры. Анализ полученных данных показал, что для достижения наиболее полного извлечения Мп из смеси шламов при одновременно низком переходе железа можно достигнуть при разложении смеси Р шлам : Мп шлам = 10:0,5-1,0 при температуре не более 38°C и продолжительности процесса не более 60 минут (рисунок 2a), либо при кислотном разложении шламов в соотношении Р шлам: Мп шлам = 10:2-3 в условиях нагрева от 57 до 90°C и длительность процесса 105-180 минут (рисунок 2б). Кривые перехода калия (рисунок 3) из смеси шламов в жидкую фазу системы «Р шлам - Мп шлам - H_2SO_4 - H_3PO_4 » носят аналогичный характер кривым извлечения марганца (рисунок 1). За исключением того, что для 57-77°С все кривые извлечения К₂О характеризуются наличием максимума только для одного соотношения Р шлам : Мп шлам = 10:3. Анализ данных показал, что в оптимальных условиях, соответствующих излечению марганца из смеси шламов происходит максимально полный переход в раствор К₂О.

Температура, °С: 25 (а);77 (б)


Рисунок 2 – Влияние соотношения шламов на извлечение железа (III) из их смеси

Температура, °С: 38 (а); 77 (б)

Рисунок 3 – Влияние соотношения шламов на извлечение К2О из их смеси

Что же касается извлечения алюминия, то с увеличением нормы марганецсодержащего шлама до соотношения Р шлам : Мп шлам = 10:3,0-3,5 в интервале 25-38°С его содержание в кислом растворе возрастает и с дальнейшим повышением нормы Мп шлама остается постоянным (рисунок 4 а). Повышение температуры процесса от 57 до 90°С приводит к появлению максимума на кривых извлечения алюминия для соотношений Р шлам : Мп шлам = 10:2,5-3,0 (рисунок 46, в). При извлечении алюминия из шламов фактор времени процесса не оказывает влияние на характер кривых. В этом случае оказывает влияние соотношение «Р шлама : Мп шлам» и температура процесса. Таким образом, варьируя соотношение известкового и марганецсодержащего шламов, температуру процесса и учитывая время их кислотного разложения можно достигать наиболее полного извлечения марганца и калия с одновременно низким переходом железа и алюминия.

Температура, ${}^{\rm o}$ С: 25 (a); 38 (б); 57,5 (б); 77 (в),

Рисунок 4 — Влияние соотношения шламов на извлечение Al_2O_3 из их смеси

Оптимальными условиями разложения смеси шламов смесью фосфорной и серной кислот являются: соотношение Р шлам:Мп шлам = 10:0,5-1,0; температура – (25-38) °C,; время - не более 60 минут, либо соотношение Р шлам : Мп шлам=10:2-3; температура от 57 до 90°C; время – (105-180) минут.

ЛИТЕРАТУРА

- [1] Ахназарова С.Л., Кафаров В.В. Оптимизация эксперимента в химии и химической технологии. М.: Наука, 1978. 319 с.
- [2] Умирбаева Р.С., Шееко В.М. Применение метода рототабельного планирования экспериментов второго порядка в изучении разрушения шламовой структуры твёрдофазными сорбентами // Механика и моделирование процессов технологии. Жамбыл, 1996. № 2. С. 219-223.
- [3] Jussipbekov U.Zh., Chernyakova R.M., Agataeva A.A., Tusupkaliev E.A. Study of sulfuric acid processes of decomposition of manganese containing slurry. Incluence of concentration acid and its norms on removal degree of manganese ions from manganese slurry acidic solution // Хим. журн. Казахстана. -2014. N₂ 1. C. 233-238.
- [4] Chernyakova R.M., Jussipbekov U.Zh., Agataeva A.A., Sultabaeva G.Sh. Study of sulfuric acid decomposition processes of manganese –sludge. Message 2. Effect of temperature and duration of the process for extraction of Mn²⁺ manganese sludge into sulfuric acid solution // Хим. журн. Казахстана. 2014. № 2. С. 85-90.
- [5] Мусаева А.Ж., Чернякова Р.М., Саржанов С.Б.,.Джусипбеков У.Ж., Батырбеков Е. Переработка известкового шлама на фосфорсодержащее удобрение // Изв. МОН РК. Сер. хим. − 2003. № 3. С. 26-30.
- [6] Пат. 2142444 РФ. Способ получения гранулированных сложных удобрений с микроэлементами / Бродский А.А., Тигонен В., Овчинникова К.Н.; опубл. 05.03.1999, Бюл. №3.
- [7] Пат. 22221760 РФ. Способ получения комплексных удобрений с микроэлементами / Чернышева Л.А, Козырева О.И.; опубл. 20.01.2004, Бюл. \mathbb{N} 1.
- [8] А.с. 1263684. СССР. Способ получения гранулированного суперфосфата / Гумбатов М.О., Федюшкин Б.Ф., Агаев Н.А., Зейналова С.А.; опубл. 15.10.1986, Бюл. №38.
- [9] А. с. 1444325. СССР. Способ получения марганецсодержащего гранулированного суперфосфата / Насибов И.О., Султанов Т.И., Гусеинов М.Н., Рукин Я.В., Весенин Н.В., Дубинин В.Г., Бушуев Н.Н., Бельская Н.П., Мурадова М.Г., Гумбатов М.О.; опубл. 15.12. 1988, Бюл. № 46.
- [10] А. с. 783293. СССР. Способ получения суперфосфата / Завертяева Т.И., Трубицына Г.Я., Бабкин В.В., Усов Г.А., Ямром В.Н.; опубл. 30.11.1980, Бюл. № 44.
- [11] А. с. 1699985 СССР. Способ получения марганецсодержащего гранулированного суперфосфата /Гришаев И.Г., Рустамов Ф.А., Гумбатов М.О.; опубл. 23.12.1991, Бюл. № 47.
- [12] Ахназарова С.Л., Драздова В.И., Коновалова Н.В., Кафаров В.В. Математическое моделирование азотнокислотного разложения котрельного молока // Хим. пром-сть. 1984. № 7. С.428-430.
 - [13] Лепилина Р.Г., Смирнова Н.М. Термограммы неорганических фосфатных соединений. Л.: Наука, 1984. 334 с.
 - [14] Кабата-Пендиас А., Пендиас. Х. Микроэлементы в почвах и растениях. М.: Мир, 1989. 439 с.
 - [15] Якушина Н.И., Бахтенко Е. Ю. Физиология растений. М.: Владос, 2005. 464 с.
- [16] Винник М.М., Ербанова Л.Н. Методы анализа фосфатного сырья, фосфорных и комплексных удобрений, кормовых фосфатов. М.: Химия, 1975. 218 с.
 - [17] Позин М.Е. Технология минеральных солей. Л.: Химия, 1983. 304 с.
 - [18] Тарасевич Ю.И., Овчаренко Φ .Д. Адсорбция на глинистых минералах. К.: Наукова думка, 1975. 351 с.
 - [19] Шарло Γ . Методы аналитической количественный анализ неорганических соединений. Л.: Химия, 1965. 975 с.
 - [20] Кафаров В.В. Методы кибернетики в химии и химической технологии. М.: Химия, 1971. 496 с.

REFERENCES

- [1] Ahnazarova S.L., Kafarov V.V. Optimization experiment in chemistry and chemical technology. M.: Nauka, 1978. 319 p. (in Russ.).
 - [2] Umirbaeva R.S., Cheeko V.M. Mechanics and modeling of technology. Zhambyl, 1996. 2, P. 219-223. (in Russ.).
 - [3] Jussipbekov U.Zh., Chernyakova R.M., Agataeva A.A., Tusupkaliev E.A. Chem. Zh. Kazakhstan. 2014. 1, P. 233-238.
 - [4] Chernyakova R.M., Jussipbekov U.Zh., Agataeva A.A., Sultabaeva G.Sh. // Chem. Zh. Kazakhstan. 2014. 2, P. 85-90.
- [5] Musaeva A., Chernyakova RM, Sarzhanov SB.,. Dzhusipbekov U.ZH., Batyrbekov E. News R.K, Ser.him, 2003. 3, 26-30 (in Russ.).
- [6] Pat. 2142444. Russia. A process for preparing granular compound fertilizer with trace elements / Brodsky A.A., Tigonen V., Ovchinnikov K.N.; publ. 05.03.1999, Bull. №3. (in Russ.).
- [7] Pat. 22221760 Russia. A method for producing complex fertilizers with trace elements / Chernyshev L.A., Kozyrev O.I.; publ. 20.01.2004, Bull. №1. (in Russ.).
- [8] A. s. 1263684. Russia. A method for producing granulated superphosphate / Humbatov M.O., Fedyushkin B.F., Agaev N.A., Zeynalova S.A.; publ. 15.10.1986, Bull. №38. (in Russ.).
- [9] A. s. 1444325. Russia. The process for producing manganese granulated superphosphate / Nasibov I.O., Sultanov T.I., Huseynov M.N., Rukin Y.V., Vesenina N.V., Dubinin., Bushuyev N.N., Bielsko N. P., Muradova M.G., Humbatov M.O.; publ. 15.12. 1988 Bull. Number 46. (in Russ.).
- [10] A. s. 783293. Russia. A method for producing superphosphate / Zavertyaev T.I., Trubitsyna G.Y., Babkin V.V., Usov G.A., Yamrom V.N.; publ. 30.11.1980, Bull. Number 44. (in Russ.).
- [11] A. s. 1699985. Russia. The process for producing manganese granulated superphosphate / Grishaev I.G., Rustamov F.A., Humbatov M.O.; publ. 23.12.1991, Bull. Number 47. (in Russ.).

- [12] Ahnazarova S.L., Drazdova V.I., Konovalov N.V., Kafarov V.V. Chemical industry, 1984. 7, 428-430 (in Russ.).
- [13] Lepilina R.G., Smirnova N.M. The thermograms of inorganic phosphate compounds. L.: Nauka, 1984. 334 p. (in Russ.).
- [14] Kabat-Pendias A., Pendias. H. Trace elements in soils and plants. M.: Mir, 1989. 439 p. (in Russ.).
- [15] Yakushina N.I., Bahtenko E.Y. Vegetable physiology. M.: Vlados, 2005. 464 p. (in Russ.).
- [16] Winnick M., Erbanova L.N. Methods for analysis of phosphate raw materials, phosphate and compound fertilizers, feed phosphates. M.: Chemistry, 1975. 218 p. (in Russ.).
 - [17] Posin M.E. The technology of mineral salts. L.: Chemistry, 1983. 304 p. (in Russ.).
 - [18] Tarasevich J.I., Ovcharenko F.D. Adsorption on clay minerals. K.: Naukova Dumka, 1975. 351 p. (in Russ.).
 - [19] Charlot G. analytical methods quantitative analysis of inorganic compounds. L.: Chemistry, 1965. 975 p. (in Russ.).
 - [20] Gafarov V.V. Cybernetics methods in chemistry and chemical technology. M.: Chemistry, 1971. 496 p. (in Russ.).

МАРГАНЕЦ ЖӘНЕ ФОСФОРДАН ТҰРАТЫН ҚОСПАЛАРДЫ КҮКІРТ ЖӘНЕ ФОСФОР ҚЫШҚЫЛЫНЫҢ ҚОСПАСЫМЕН ЫДЫРАТУ ҮРДІСІНЕ ҚАТЫНАСТАРЫНЫҢ ӘСЕРІ

Р.М. Чернякова., Р.А. Қайынбаева, Н.Н. Қожабекова, Ө.Ж. Жүсіпбеков, Д.С. Бержанов, М. Е. Құсайынова, А.А. Ағатаева

АҚ «А.Б. Бектұров атындағы химия ғылымдары институты», Алматы, Қазақстан

Тірек сөздер: Әк шламы, марганец шламы, күкірт қышқылы, фосфор қышқылы, сілтілендіру.

Аннотация. Процесс температурасын, эктас және марганецті шламның қатынасын реттей отырып және олардың фосфор және күкірт қышқылдарының қоспаларымен ыдырау уақытын ескере отырып, темір мен алюминийдің қышқыл ерітіндіге біруақытта аз немесе көп өтуімен марганец пен калийдің толығымен өтуіне қол жеткізуге болатыны анықталды. Р шлам : Мп шлам=10:2,5-3,0 қатынасы 57-ден°С алюминий өндіру коэффициенттері Р суспензия үшін қисық максимум 90 °С температурада артады. Суспензия процесінің алюминий бөлу кезде уақыт әсер етпейді. Марганец және әк тұнба қатынасы, процесс температурасы, және қышқыл ас қорыту уақытын ескере отырып, темір және алюминий төмен ауысу кезінде марганец және калий толық өндіруді өзгерту арқылы қол жеткізуге болады. Шламдар қоспасының фосфор және күкірт қышқылдарының қоспаларымен ыдырауының қолайлы жағдайлары мынадай болып табылады: Р шлам : Мп шлам қатынасы = 10:0,5-1,0; температура – (25 - 38)°С,; уақыт – 60 минуттан көп емес, немесе Р шлам : Мп шлам қатынасы = 10:2-3; температура 57ден 90°С дейін; уақыт – (105-180) минут.

Поступила 03.06.2015г.

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz chemistry-technology.kz

Редакторы: $M. \ C. \ Axметова, \ T. \ A. \ Aneндиев$ Верстка на компьютере $\mathcal{J}. \ H. \ Kалкабековой$

Подписано в печать 15.06.2015. Формат 60х881/8. Бумага офсетная. Печать – ризограф. 10,75 п.л. Тираж 300. Заказ 3.