ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ

ХАБАРЛАРЫ

ИЗВЕСТИЯ

НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН

NEWS

OF THE ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN

ХИМИЯ ЖӘНЕ ТЕХНОЛОГИЯ СЕРИЯСЫ

СЕРИЯ ХИМИИ И ТЕХНОЛОГИИ

SERIES CHEMISTRY AND TECHNOLOGY

2 (410)

НАУРЫЗ – СӘУІР 2015 ж. МАРТ – АПРЕЛЬ 2015 г. MARCH – APRIL 2015

1947 ЖЫЛДЫҢ ҚАҢТАР АЙЫНАН ШЫҒА БАСТАҒАН ИЗДАЕТСЯ С ЯНВАРЯ 1947 ГОДА PUBLISHED SINCE JANUARY 1947

> ЖЫЛЫНА 6 РЕТ ШЫҒАДЫ ВЫХОДИТ 6 РАЗ В ГОД PUBLISHED 6 TIMES A YEAR

> > АЛМАТЫ, ҚР ҰҒА АЛМАТЫ, НАН РК ALMATY, NAS RK

Бас редактор ҚР ҰҒА академигі **М. Ж. Жұрынов**

Редакция алкасы:

хим. ғ. докторы, проф., ҚР ҰҒА академигі Әдекенов С.М.; хим. ғ. докторы, проф., ҚР ҰҒА академигі **Ерғожин Е.Е.** (бас редактордың орынбасары); хим. ғ. докторы, проф., ҚР ҰҒА академигі **Пірәлиев К.Д.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Бүркітбаев М.М.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Бүркітбаев М.М.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Жүсіпбеков У.Ж.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Молдахметов М.З.**, техн. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Молдахметов М.З.**, техн. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Сатаев М.И.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Сатаев М.И.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Сатаев М.И.**; хим. ғ. докторы, проф., ҚР ҰҒА корр. мүшесі **Тәшімов Л.Т.**; хим. ғ. докторы, проф. **Мансуров З.А.**; техн. ғ. докторы, проф. **Наурызбаев М.К.**

Редакция кеңесі:

Беларусь Республикасының ҰҒА академигі **Агабеков В.Е.** (Беларусь); Украинаның ҰҒА академигі **Волков С.В.** (Украина); Қырғыз Республикасының ҰҒА академигі **Жоробекова Ш.Ж.** (Қырғызстан); Армения Республикасының ҰҒА академигі **Манташян А.А.** (Армения); Молдова Республикасының ҰҒА академигі **Туртэ К.** (Молдова); Әзірбайжан ҰҒА академигі **Фарзалиев В.** (Әзірбайжан); Тәжікстан Республикасының ҰҒА академигі **Халиков Д.Х.** (Тәжікстан); хим. ғ. докторы, проф. **Нараев В.Н.** (Ресей Федерациясы); философия ғ. докторы, профессор **Полина Прокопович** (Ұлыбритания); хим. ғ. докторы, профессор **Марек Сикорски** (Польша)

Главный редактор

академик НАН РК **М. Ж. Журинов**

Редакционная коллегия:

доктор хим. наук, проф., академик НАН РК С.М. Адекенов; доктор хим. наук, проф., академик НАН РК Е.Е. Ергожин (заместитель главного редактора); доктор хим. наук, проф., академик НАН РК К.Д. Пралиев; доктор хим. наук, проф., чл.-корр. НАН РК А.Б. Баешов; доктор хим. наук, проф., чл.-корр. НАН РК М.М. Буркитбаев; доктор хим. наук, проф., чл.-корр. НАН РК У.Ж. Джусипбеков; доктор хим. наук, проф., чл.-корр. НАН РК М.З. Мулдахметов; доктор техн. наук, проф., чл.-корр. НАН РК Ж.У. Мырхалыков; доктор мед. наук, проф., чл.-корр. НАН РК К.Д. Рахимов; доктор хим. наук, проф., чл.-корр. НАН РК М.И. Сатаев; доктор хим. наук, проф., чл.-корр. НАН РК М.И. Сатаев; доктор хим. наук, проф., чл.-корр. НАН РК Л.Т. Ташимов; доктор хим. наук, проф. З.А. Мансуров; доктор техн. наук, проф. М.К. Наурызбаев

Редакционный совет:

академик НАН Республики Беларусь **В.Е. Агабеков** (Беларусь); академик НАН Украины **С.В. Волков** (Украина); академик НАН Кыргызской Республики **Ш.Ж. Жоробекова** (Кыргызстан); академик НАН Республики Армения **А.А. Манташян** (Армения); академик НАН Республики Молдова **К. Туртэ** (Молдова); академик НАН Азербайджанской Республики **В. Фарзалиев** (Азербайджан); академик НАН Республики Таджикистан **Д.Х. Халиков** (Таджикистан); доктор хим. наук, проф. **В.Н. Нараев** (Россия); доктор философии, профессор **Полина Прокопович** (Великобритания); доктор хим. наук, профессор **Марек Сикорски** (Польша)

«Известия НАН РК. Серия химии и технологии». ISSN 2224-5286

Собственник: Республиканское общественное объединение «Национальная академия наук Республики Казахстан» (г. Алматы)

Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №10893-Ж, выданное 30.04.2010 г.

Периодичность: 6 раз в год Тираж: 300 экземпляров

Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18,

http://nauka-nanrk.kz/chemistry-technology.kz

© Национальная академия наук Республики Казахстан, 2015

Адрес редакции: 050100, г. Алматы, ул. Кунаева, 142,

Институт органического катализа и электрохимии им. Д. В. Сокольского,

каб. 310, тел. 291-62-80, факс 291-57-22, e-mail:orgcat@nursat.kz

Адрес типографии: ИП «Аруна», г. Алматы, ул. Муратбаева, 75

Editor in chief

M. Zh. Zhurinov, academician of NAS RK

Editorial board:

S.M. Adekenov, dr. chem. sc., prof., academician of NAS RK; A.M. Gazaliev, dr. chem. sc., prof., academician of NAS RK; Ye.Ye. Yergozhin, dr. chem. sc., prof., academician of NAS RK (deputy editor); K.D. Praliyev, dr. chem. sc., prof., academician of NAS RK; A.B. Bayeshov, dr. chem. sc., prof., corr. member of NAS RK; M.M. Burkitbayev, dr. chem. sc., prof., corr. member of NAS RK; U.Zh. Zhusipbekov, dr. chem. sc., prof., corr. member of NAS RK; Kh.I. Itzhanova, dr. chem. sc., prof., corr. member of NAS RK; M.Z.Muldakhmetov, dr. eng. sc., prof., corr. member of NAS RK; Zh.U. Myrkhalykov, dr. eng. sc., prof., corr. member of NAS RK; K.D. Rakhimov, dr. med. sc., prof., corr. member of NAS RK; M.I. Satayev, dr. chem. sc., prof., corr. member of NAS RK; L.T. Tashimov, dr. chem. sc., prof., corr. member of NAS RK; Z.A. Mansurov, dr. chem. sc., prof..; M.K. Nauryzbayev, dr. eng. sc., prof.

Editorial staff:

V.Ye. Agabekov, NAS Belarus academician (Belarus); S.V. Volkov, NAS Ukraine academician (Ukraine); Sh.Zh. Zhorobekov, NAS Kyrgyzstan academician (Kyrgyzstan); A.A. Mantashyan, NAS Armenia academician (Armenia); K. Turte, NAS Moldova academician (Moldova); V. Farzaliyev, NAS Azerbaijan academician (Azerbaijan); D.Kh. Khalikov, NAS Tajikistan academician (Tajikistan); V.N. Narayev, dr. chem. sc., prof. (Russia); Pauline Prokopovich, dr. phylos., prof. (UK); Marek Sikorski, dr. chem. sc., prof. (Poland)

News of the National Academy of Sciences of the Republic of Kazakhstan. Series of chemistry and technology. ISSN 2224-5286

Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty)

The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the Ministry of Culture and Information of the Republic of Kazakhstan N 10893-Ж, issued 30.04.2010

Periodicity: 6 times a year Circulation: 300 copies

Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18,

http://nauka-nanrk.kz/chemistry-technology.kz

© National Academy of Sciences of the Republic of Kazakhstan, 2015

Editorial address: Institute of Organic Catalysis and Electrochemistry named after D. V. Sokolsky

142, Kunayev str., of. 310, Almaty, 050100, tel. 291-62-80, fax 291-57-22,

e-mail: orgcat@nursat.kz

Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty

— 4 —

NEWS

OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES CHEMISTRY AND TECHNOLOGY

ISSN 2224-5286

Volume 2, Number 410 (2015), 54 - 57

HYDROGENATION OF AROMATIC NITROPHENOLS AT THE RAISED PRESSURE. THE MESSAGE I

I. A. Kuksina¹, L. R. Sassykova², Sh. Kubekova¹

¹K. Satpaev Kazakh National Technical University, Almaty, Kazakhstan,
²D. Sokolskii Institute of Organic Catalysis & Electrochemistry, Almaty, Kazakhstan.
E-mail: larissa.rav@mail.ru

Key words: hydrogenation, aromatic nitrophenol, palladium & platinum catalysts.

Abstract. The precipitated catalysts on the basis of Pt and Pd are prepared and tested in the process of hydrogenation of mono-nitrocompounds of aromatic row. The contents of the catalytic compositions and the process conditions, allowing to synthesize aniline and aminophenols with an yield about 85-99 % in the soft conditions are selected.

УДК 541.524:547.546

ГИДРИРОВАНИЕ АРОМАТИЧЕСКИХ НИТРОФЕНОЛОВ ПРИ ПОВЫШЕННОМ ДАВЛЕНИИ. СООБЩЕНИЕ I

И. А. Куксина¹, Л. Р. Сасыкова², Ш. Н. Кубекова¹

¹Казахский национальный технический университет им. К. И. Сатпаева, Алматы, Казахстан, ²АО «Институт органического катализа и электрохимии им. Д. В. Сокольского», Алматы, Казахстан

Ключевые слова: гидрирование, ароматические нитрофенолы, платиновые и палладиевые катализаторы.

Аннотация. Приготовлены нанесенные катализаторы на основе Pt и Pd и испытаны в процессе гидрирования мононитросоединений ароматического ряда. Подобраны составы каталитических композиций и условия процесса, позволяющие синтезировать анилин и аминофенолыс выходом до 85-99% в мягких условиях.

Ароматические моно-, ди- и полиамины благодаря их высоким реакционным свойствам находят широкое применение при производстве различных соединений: синтетических красителей и волокон, фотохимикатов, стабилизаторов топлива и присадок к смазочным маслам, химических средств защиты растений, сорбентов, лекарственных препаратов и др. Синтез аминов путем каталитического гидрирования соответствующих нитросоединений — наиболее перспективный способ [1]. Гидрирование нитросоединений может быть осуществлено в паровой и жидкой фазах. При получении аминов в паровой фазе требуется использование высоких температур (до 573-623 K), часть нитросоединений может претерпевать разложение. Синтез в паровой фазе также может осложняться гидрированием ароматического кольца, что снижает селективность процесса. В этих условиях могут происходить реакции осмоления и дезаминирования, что существенно дезактивирует катализатор. Использование же жидкофазного каталитического восстановления нитросоединений позволяет проводить процесс при достаточно низких температурах, что приводит к значительному снижению затрат электроэнергии и взрывоопасности системы. Этот метод синтеза

аминов — более экологически чистый, при этом целевые продукты-амины — получаются с достаточно высокими выходами. Надо отметить, что в любом случае, процесс восстановления нитросоединений очень сложен, многостадиен, при этом требуется тщательный подбор активных селективных и достаточно стабильных катализаторов, а также условий процесса — температуры, растворителя и давления водорода.

Анализ литературы глубиной 25 лет [2, 3] показывает большое число исследований по восстановлению нитробензола до анилина и недостаточность изучения гидрирования некоторых нитросоединений, в частности, нитрофенолов, которые и были выбраны нами в качестве объектов исследования. Для изучения кинетики и механизма процесса гидрирования ароматичеких нитросоединений до соответствующих аминов были использованы хроматографически чистые, предварительно перегнанные в вакууме или очищенные перекристаллизацией нитробензол (НБ) и параи орто-нитрофенолы (п-НФ, о-НФ), физико-химические данные которых соответствовали справочным [4]. В качестве растворителей применяли дистиллированную воду и спирты C₂-C₅ марки «ХЧ». Использовали электролитичекий водород из баллона (99,8%), и гелий (99,992) из баллонадля хроматографичекого анализа как газ-носитель. Процесс гидрирования при повышенном давлении водорода исследовали на кинетической установке высокого давления (КУВД), основной частью которой является усовершенствованный автоклав Вишневского, с общим объемом 60 см³ из титана ВТ-3 с герметичным электроприводом и турбинной мешалкой. Обогрев автоклава проводится электропечью с помощью хромель-копелевой термопары с точностью ± 2 К. Устройство автоклава позволяет брать пробы на анализ без нарушения равновесных условий опыта.

В работе были приготовлены катализаторы на основе Pt и Pd, путем нанесения соответствующих соединений на γ - Al_2O_3 и уголь (C) методом пропитки. Для предотвращения гидролиза при использовании $PdCl_2$ в раствор добавляли раствор NaCl. При синтезе Pd–Pt катализаторов в некоторых случаях применяли 2%-ный раствор Na_2CO_3 . Катализаторы тщательно отмывали от ионов хлора (контроль по реакции c $AgNO_3$). Далее проводилась процедура восстановления катализаторов в токе водорода при T=473 K в кварцевой печи. Кроме того, катализаторы, помещенные в автоклав, непосредственно перед каждым опытом довосстанавливались в среде растворителя в течение 30 мин. в условиях опыта. Физико-химическими методами исследования установлено, что катализаторы на основе Pd, нанесенного на уголь, имеют удельную площадь поверхности в пределах 800-850 M^2/Γ , катализаторы на основе Pd0 Pd-Pt1 Pd208-290 Pd1. Основной диаметр частиц Pd4-16 нм.

Основными методами анализа в настоящем исследовании были газо-жидкостная хроматография с пламенно-ионизационным детектором (ГЖХ), диазометрическое титрование. Инфракрасная спектроскопия (ИКС). Оценку точности кинетических измерений проводили с помощью критерия Кохнера [5].

Литературный поиск показывает, что гидрирование ароматических нитрофенолов до соответствующих аминов изучалось небольшим числом исследователей, в основном, при атмосферном давлении [5].

При определении области протекания реакции были проведены опыты с различными навесками катализаторов. Обнаружено, что с увеличением навески катализатора от 0,03 до 0,3 г – в 7-8 раз возрастает скорость восстановления НБ и НФ. Во всех случаях скорость гидрирования ароматических нитросоединений оказалась прямо пропорциональна увеличению навески катализатора. Этот фактор является одним из признаков протекания реакции во внешне-кинетической области. Предварительными опытами нами было установлено, что среди используемых нами растворителей (дистиллированная вода, спирты C_2 - C_5) для гидрирования НФ на Pd-катализаторе наиболее подходит изо-пропанол, а на Pd –Pt и Pt-катализаторах-этанол. Эти растворители в дальнейшем и были использованы для изучения процесса гидрирования при различных давлениях и температурах. Хроматографический анализ показал, что механизм превращения ароматических нитросоединений (гидрогенизационный) идентичный для всех растворителей. При использовании дистиллированной воды и спиртов C_4 - C_5 были замечены наименьшие выходы соответствующих ароматических аминов при восстановлении нитросоединений на Pd –Pt и Pt-катализаторах. При использовании изо-пропанола для этих катализаторов выход целевых аминов уменьшался за счет побочных реакций, в частности, дальнейшего продолжения процесса восстановления по арома-

тическому кольцу. Так, при гидрировании НБ в катализате, помимо анилина, уже при комнатной температуре был обнаружен циклогексиламин-продукт гидрирования ароматического кольца (4-6%), а при увеличении температуры содержание циклогексиламина увеличивалось до 8-10%. При гидрировании НБ и НФ на Рd-катализаторе наблюдалось гидрирование только нитрогрупп, независимо от растворителей и применяемых условий опыта. При этом выход анилина составлял 96-99%, п-аминофенола – 89-96%, о-аминофенола – 86-92%.

Для сравнения изучали в идентичных условиях гидрирование нитробензола и НФ. Выявлено, что скорость гидрирования НФ на Рd-катализаторе значительно ниже, чем скорость гидрирования НБ. Исследованные нитросоединения по снижению начальной скорости гидрирования образуют ряд: НБ>>п-НФ > о-НФ. Уменьшение скорости гидрирования в ароматических нитрофенолах по сравнению с нитробензолом связано, по-видимому, с уменьшением адсорбционной способности о- и п-НФ, особенно в случае с о-НФ. Обнаружено, что, независимо от катализатора и условий процесса при гидрировании п-НФ происходит поглощение теоретически рассчитанного по реакции количества водорода, тогда как при гидрировании о-НФ при давлениях ниже 4,0-4,5 МПа происходит недопоглощение требуемого по реакции количества водорода. При давлениях выше 4,0-4,5 МПа процесс восстановления о-НФ протекает до конца.

Было установлено, что вид кинетических кривых с увеличением навески НФ не изменяется. Порядок реакции по субстрату для НФ-нулевой.

Установлено, что температурная зависимость гидрирования НФ описывается уравнением Аррениуса. Влияние температуры процесса изучено при давлениях водорода 0,5 МПа и 2,0 МПа. В таблице приведены данные по гидрированию НФ при различных температурах опыта.

Восстановление п-, о-НФ при давлениях водорода – 0,5 и 2,0 МПа, катализатор – Pd/C, Pd/γ-Al ₂ O ₃ , количест	во
катализатора – 0,05 г, теоретически рассчитанное количество водорода – 600 см ³ , растворитель – изо-пропан	ОЛ

Катализатор	НФ	Температур а, К	Давление водорода	Скорость реакции, 1 MH_2	Продолжительность процесса, мин.	Выход аминофенола, %
Pd/C	0-	303	0,5	30,0	22,5	68,0
Pd/γ-Al ₂ O ₃	0-	323	0,5	36,0	19,0	71,0
Pd/C	0-	323	0,5	50,0	20,0	92,0
Pd/γ-Al ₂ O ₃	0-	323	0,5	85,0	18,0	98,0
Pd/C	0-	353	0,5	200,0	24,0	86,0
Pd/γ-Al ₂ O ₃	0-	353	0,5	218,8	20,0	90,0
Pd/C	П-	303	0,5	59,0	24,0	90,0
Pd/γ-Al ₂ O ₃	П-	303	0,5	65,0	22,0	94,0
Pd/C	П-	323	2,0	140	22,0	90,0
Pd/γ-Al ₂ O ₃	П-	323	2,0	152	20,0	95,0
Pd/C	П-	333	0,5	180	19,8	92,0
Pd/γ-Al ₂ O ₃	П-	333	0,5	220	17,5	97,0
Pd/C	П-	343	2,0	215	14,0	90,0
Pd/γ-Al ₂ O ₃	П-	343	2,0	240	10,0	99,0

Полученные данные показывают, что скорость гидрирования и выход аминофенола ниже в случае восстановления о-НФ. При этом повышение температуры до 353 K при гидрировании этого соединения оказалось нецелесообразным – так, например, для Pd/C катализатора при 0,5 МПа выход о-аминофенола снизился от 92,0% при 323 K до 86,0% при 353 K, та же тенденция замечена и для и Pd/ γ -Al $_2$ O $_3$ катализатора – уменьшение выхода аминофенола с 98,0 до 90,0 %, соответственно. При увеличении температуры реакции от 333K до 353 K процесс начинает осложняться побочными реакциями, по этой причине оптимальной температурой для гидрирования о-НФ можно считать 323 K. Установлено, что гидрирование НФ на катализаторе состава Pd/ γ -Al $_2$ O $_3$ протекает с лучшими выходами и более высокой скоростью. Наиболее высокие результаты по

синтезу п-аминофенола замечены при 343 К. При этом выход п-аминофенола на катализаторе Pd/γ - Al_2O_3 при 2,0 МПа составил 99%.

Таким образом, синтезирован ряд нанесенных катализаторов на основе PdPd-Pt и испытан в реакции восстановления НБ и о-НФ, п-НФ при повышенном давлении водорода в жидкой фазе. Проведено исследование эффективности каталитических систем при различных температурах. Определены оптимальные параметры процесса, позволяющие синтезировать ароматические амины с выходом 85-99% в мягких условиях проведения процесса.

ЛИТЕРАТУРА

- [1] Yasuda Y., Kameoka T., Sato T. et. Sulfurtolerant $Pd-Pt/Al_2O_3-B_2O_3$ catalyst for aromatic hydrogenation // Appl. Catalysis. A. $-1999.-Vol.\ 185.-P.\ 199-201.$
- [2] Юркина О.В., Краев Ю.Л. Гидрирование ароматических углеводородов средних нефтяных дистиллятов на палладийсодержащих катализаторах // Нефтепереработка и нефтехимия. 2002. № 11. С. 8-11.
- [3] Сасыкова Л.Р., Касенова Д.Ш., Бижанов Ф.Б. Изучение реакции восстановления моно- и динитросоединений в жидкой фазе под давлением // Мат-лы II межд. научно-практ. конф. «Теоретическая и экспериментальная химия», 16-17 сентября 2004 г., Караганда, Казахстан. С. 127-129.
 - [4] Рабинович В.А., Хавин З.Я., Краткий химический справочник. Л.: Химия, 1978. 392 с.
- [5] Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука, 1969. 512 с.

REFERENCES

- [1] YasudaY., Kameoka T., Sato T. et. Pd-Pt/Al₂O₃-B₂O₃catalyst for aromatic hydrogenation. *Appl. Catalysis*. A. **1999,** 185, 199-201 (in Eng.).
- [2] Yurkina O., Kuaev Y. Hydrogenation of aromatic hydrocarbons medium petroleum distillate for palladium catalysts. *J. Neftepererabotka i neftehimija*. **2002**, 11, 8-11(in Russ.).
- [3] Sassykova L.R., Kassenova D., Bizhanov F. The study of the reduction reaction of mono- and dinitrosoedineny in the liquid phase under pressure // Materials II inter. scien.- practical conference "Theoretical and Experimental Chemistry", 16-17 September 2004, Karaganda, Kazakhstan. 16-17 September 2004, 127-129 (in Russ.).
 - [4] Rabinovich V., Khavin Z., Short chemical handbook. L.: Himija, 1978, 392 p. (in Russ.).
- [5] Smirnov N., Dunin-Barkovski I. Probability theoryes and mathematical statistics Courses fo engineering software. M.: Nauka, **1969**, 512 p. (in Russ.).

АРОМАТТЫ НИТРОФЕНОЛДАРДЫ ЖОҒАРЫ ҚЫСЫМДА СУТЕКТЕУ. ХАБАРЛАМА І

И. А. Куксина¹, Л. Р. Сасыкова², Ш. Н. Кубекова¹

¹Қ. И. Сатбаев атындағы Қазақ Ұлттық техникалық университеті, Алматы, Қазақстан, ²Д. В. Сокольский атындағы органикалық катализ және электрохимия институты АҚ, Алматы, Қазақстан

Тірек сөздер: сутектеу, ароматты нитрофенолдар, платина және палладий катализаторлары.

Аннотация. Рt мен Pd негізіндегі тасымалданған катализаторлар дайындалды және олар ароматтық қатардың мононитор қосылыстарын сутектеу процесінде зерттелді. Катализдік композициялардың құрамдары және процесті жүргізу жағдайлары, анилин мен аминофенолдарды 85-99% -дық шығыммен жұмсақ жағдайда алынуыталданды.

Поступила 03.04.2015г.

Правила оформления статьи для публикации в журнале смотреть на сайте:

www:nauka-nanrk.kz chemistry-technology.kz

Редакторы: *М. С. Ахметова, Т. А. Апендиев* Верстка на компьютере *Д. Н. Калкабековой*

Подписано в печать 07.03.2015. Формат 60х881/8. Бумага офсетная. Печать — ризограф. 8,25 п.л. Тираж 300. Заказ 2.

Национальная академия наук РК 050010, Алматы, ул. Шевченко, 28, т. 272-13-18, 272-13-19
